OCR Further Additional Pure (Further Additional Pure) 2021 November

Question 1
View details
1 In this question you must show detailed reasoning. Express the number \(\mathbf { 4 1 7 2 3 } _ { 10 }\) in hexadecimal (base 16).
Question 2
View details
2 The following Cayley table is for \(G\), a group of order 6. The identity element is \(e\) and the group is generated by the elements \(a\) and \(b\).
G\(e\)\(а\)\(a ^ { 2 }\)\(b\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)
\(e\)\(e\)\(а\)\(a ^ { 2 }\)\(b\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)
\(a\)\(а\)\(a ^ { 2 }\)\(e\)\(a b\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(b\)
\(a ^ { 2 }\)\(a ^ { 2 }\)\(e\)\(a\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(b\)\(a b\)
\(b\)b\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a b\)\(e\)\(a ^ { 2 }\)\(a\)
\(a b\)\(a b\)b\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a\)\(e\)\(a ^ { 2 }\)
\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(\mathrm { a } ^ { 2 } \mathrm {~b}\)\(a b\)b\(a ^ { 2 }\)\(a\)\(e\)
  1. List all the proper subgroups of \(G\).
  2. State another group of order 6 to which \(G\) is isomorphic.
Question 3
View details
3 The points \(P , Q\) and \(R\) have position vectors \(\mathbf { p } = 2 \mathbf { i } + \mathbf { j } + 5 \mathbf { k } , \mathbf { q } = \mathbf { i } - \mathbf { j } + \mathbf { k }\) and \(\mathbf { r } = 2 \mathbf { i } + \mathbf { j } + t \mathbf { k }\) respectively, relative to the origin \(O\). Determine the value(s) of \(t\) in each of the following cases.
  1. The line \(O R\) is parallel to \(\mathbf { p } \times \mathbf { q }\).
  2. The volume of tetrahedron \(O P Q R\) is 13 .
Question 4
View details
4 Solve the simultaneous linear congruences \(x \equiv 1 ( \bmod 3 ) , x \equiv 5 ( \bmod 11 ) , 2 x \equiv 5 ( \bmod 17 )\).
Question 5
View details
5 The surface \(S\) has equation \(x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = x y z - 1\).
  1. Show that \(( 2 z - x y ) \left( x \frac { \partial z } { \partial x } + y \frac { \partial z } { \partial y } \right) = 2 \left( 1 + z ^ { 2 } \right)\).
  2. Deduce that \(S\) has no stationary point.
Question 6
View details
6 The binary operation ◇ is defined on the set \(\mathbb { C }\) of complex numbers by
\(( a + i b ) \diamond ( c + i d ) = a c + i ( b + a d )\)
where \(a , b , c\) and \(d\) are real numbers.
  1. Is \(\mathbb { C }\) closed under △ ? Justify your answer.
  2. Prove that ◇ is associative on \(\mathbb { C }\).
  3. Determine the identity element of \(\mathbb { C }\) under \(\diamond\).
  4. Determine the largest subset S of \(\mathbb { C }\) such that \(( \mathrm { S } , \diamond )\) is a group.
Question 7
View details
7 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { \mathrm { n } } \mathrm { xdx }\) for integers \(n \geqslant 0\).
  1. Show that, for \(n \geqslant 2 , \quad \mathrm { nl } _ { \mathrm { n } } = ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } - 2 }\).
  2. Use this reduction formula to deduce the exact value of \(I _ { 8 }\).
  3. Use the results of parts (a) and (b) to determine the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { 6 } x \sin ^ { 2 } x d x\).
Question 8
View details
8
  1. Solve the second-order recurrence system \(\mathrm { H } _ { \mathrm { n } + 2 } = 5 \mathrm { H } _ { \mathrm { n } + 1 } - 4 \mathrm { H } _ { \mathrm { n } }\) with \(H _ { 0 } = 3 , H _ { 1 } = 7\) for \(n \geqslant 0\).
    1. Write down the quadratic residues modulo 10 .
    2. By considering the sequence \(\left\{ \mathrm { H } _ { \mathrm { n } } \right\}\) modulo 10, prove that \(\mathrm { H } _ { \mathrm { n } }\) is never a perfect square.
Question 9
View details
9 For each value of \(k\) the sequence of real numbers \(\left\{ u _ { n } \right\}\) is given by \(u _ { 1 } = 2\) and \(u _ { n + 1 } = \frac { k } { 6 + u _ { n } }\). For each of the following cases, either determine a value of \(k\) or prove that one does not exist.
  1. \(\left\{ \mathrm { u } _ { n } \right\}\) is constant.
  2. \(\left\{ \mathrm { u } _ { \mathrm { n } } \right\}\) is periodic, with period 2 .
  3. \(\left\{ \mathrm { u } _ { \mathrm { n } } \right\}\) is periodic, with period 4 .
Question 10
View details
10
\includegraphics[max width=\textwidth, alt={}, center]{df94bc38-5187-4349-9005-f9b72691c70d-4_519_770_251_242} A student wishes to model the saddle of a horse. They use a surface described by a function of the form \(\mathrm { z } = \mathrm { f } ( \mathrm { x } , \mathrm { y } )\) with a saddle point at the origin \(O\). The z -axis is vertically upwards. The \(x\) - and \(y\)-axes lie in a horizontal plane, with the \(x\)-axis across the horse and the \(y\)-axis along the length of the horse (see diagram). The arc \(A O B\) is part of a parabola which lies in the \(y z\)-plane. The arc \(C O D\) is part of a parabola which lies in the \(x z\)-plane. The saddle is symmetric in both the \(x z\)-plane and \(y z\)-plane. The length of the saddle, the distance \(A B\), is to be 0.6 m with both \(A\) and \(B\) at a height of 0.27 m above \(O\). The width of the saddle, the distance \(C D\), is to be 0.5 m with both \(C\) and \(D\) at a depth of 0.4 m below \(O\).
  1. On separate diagrams, sketch the sections \(x = 0\) and \(y = 0\).
    [0pt]
  2. Determine a function f that describes the saddle. [You do not need to state the domain of function f .] \section*{END OF QUESTION PAPER} \section*{OCR
    Oxford Cambridge and RSA}