6 A linear programming problem is
Maximise \(\mathrm { P } = 2 \mathrm { x } - \mathrm { y }\)
subject to
$$\begin{aligned}
3 x + y - 4 z & \leqslant 24
5 x - 3 z & \leqslant 60
- x + 2 y + 3 z & \leqslant 12
\end{aligned}$$
and \(x \geqslant 0 , y \geqslant 0 , z \geqslant 0\)
- Represent this problem as an initial simplex tableau.
- Carry out one iteration of the simplex algorithm.
After two iterations the resulting tableau is
| \(P\) | \(x\) | \(y\) | \(z\) | \(s\) | \(t\) | \(u\) | RHS |
| 1 | 0 | \(\frac { 5 } { 11 }\) | 0 | \(- \frac { 6 } { 11 }\) | \(\frac { 8 } { 11 }\) | 0 | \(30 \frac { 6 } { 11 }\) |
| 0 | 1 | \(- \frac { 3 } { 11 }\) | 0 | \(- \frac { 3 } { 11 }\) | \(\frac { 4 } { 11 }\) | 0 | \(15 \frac { 3 } { 11 }\) |
| 0 | 0 | \(- \frac { 5 } { 11 }\) | 1 | \(- \frac { 5 } { 11 }\) | \(\frac { 3 } { 11 }\) | 0 | \(5 \frac { 5 } { 11 }\) |
| 0 | 0 | \(\frac { 34 } { 11 }\) | 0 | \(\frac { 12 } { 11 }\) | \(- \frac { 5 } { 11 }\) | 1 | \(10 \frac { 10 } { 11 }\) |
- Write down the basic variables after two iterations.
- Write down the exact values of the basic feasible solution for \(x , y\) and \(z\) after two iterations.
- State what you can deduce about the optimal value of the objective for the original problem.
You are now given that, in addition to the constraints above, \(\mathrm { x } + \mathrm { y } + \mathrm { z } = 9\).
- Use the additional constraint to rewrite the original constraints in terms of \(x\) and \(y\) but not \(z\).
- Explain why the simplex algorithm cannot be applied to this new problem without some modification.