OCR Further Mechanics 2022 June — Question 6

Exam BoardOCR
ModuleFurther Mechanics (Further Mechanics)
Year2022
SessionJune
TopicVariable Force

6 A particle \(P\) of mass 2.5 kg is free to move along the \(x\)-axis. When its displacement from the origin is \(x \mathrm {~m}\) its velocity is \(v \mathrm {~ms} ^ { - 1 }\). At time \(t = 0\) seconds, \(P\) is at the point where \(x = 1\) and is travelling in the negative \(x\)-direction with speed \(5 \mathrm {~ms} ^ { - 1 }\). At this time an impulse of \(I\) Ns is applied to \(P\) in the positive \(x\)-direction so that \(P\) moves in the positive \(x\)-direction with speed \(18 \mathrm {~ms} ^ { - 1 }\).
  1. Find the value of \(I\). Subsequently, whenever \(P\) is in motion, two forces act on it. The first force acts in the positive \(x\)-direction and has magnitude \(\frac { 5 v ^ { 2 } } { x } N\). The second force acts in the negative \(x\)-direction and has magnitude 60 vN .
  2. Show that the motion of \(P\) can be modelled by the differential equation \(\frac { \mathrm { dV } } { \mathrm { dx } } = \frac { \mathrm { aV } } { \mathrm { x } } + \mathrm { b }\) where \(a\) and \(b\) are constants whose values should be determined.
  3. By solving the differential equation derived in part (b) find an expression for \(v\) in terms of \(x\). You are given that \(\mathrm { x } = \frac { 4 } { 3 \mathrm { e } ^ { - 24 \mathrm { t } } + 1 }\) when \(t \geqslant 0\).
  4. Describe in detail the motion of \(P\) when \(t \geqslant 0\).