3 A particle \(P\) of mass 6 kg moves in a straight line under the action of a single force of magnitude \(F N\) which acts in the direction of motion of \(P\).
At time \(t\) seconds, where \(t \geqslant 0 , F\) is given by \(\mathrm { F } = \frac { 1 } { 5 - 4 \mathrm { e } ^ { - \mathrm { t } ^ { 2 } } }\).
When \(t = 0\), the speed of \(P\) is \(1.9 \mathrm {~ms} ^ { - 1 }\).
- Find the impulse of the force over the period \(0 \leqslant t \leqslant 2\).
- Find the speed of \(P\) at the instant when \(t = 2\).
- Find the work done by the force on \(P\) over the period \(0 \leqslant t \leqslant 2\).