OCR Further Pure Core 2 2021 November — Question 8

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2021
SessionNovember
TopicFirst order differential equations (integrating factor)

8 A particle \(P\) of mass 2 kg can only move along the straight line segment \(O A\), where \(O A\) is on a rough horizontal surface. The particle is initially at rest at \(O\) and the distance \(O A\) is 0.9 m . When the time is \(t\) seconds the displacement of \(P\) from \(O\) is \(x \mathrm {~m}\) and the velocity of \(P\) is \(v \mathrm {~ms} ^ { - 1 }\). \(P\) is subject to a force of magnitude \(4 \mathrm { e } ^ { - 2 t } \mathrm {~N}\) in the direction of \(A\) for any \(t \geqslant 0\). The resistance to the motion of \(P\) is modelled as being proportional to \(v\). At the instant when \(t = \ln 2 , v = 0.5\) and the resultant force on \(P\) is 0 N .
  1. Show that, according to the model, \(\frac { d v } { d t } + v = 2 e ^ { - 2 t }\).
  2. Find an expression for \(v\) in terms of \(t\) for \(t \geqslant 0\).
  3. By considering the behaviour of \(v\) as \(t\) becomes large explain why, according to the model, \(P\) 's speed must reach a maximum value for some \(t > 0\).
  4. Determine the maximum speed considered in part (c).
  5. Determine the greatest value of \(t\) for which the model is valid.