OCR Further Pure Core 2 2021 November — Question 7

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2021
SessionNovember
TopicIntegration with Partial Fractions

7 In this question you must show detailed reasoning.
  1. Find the values of \(A , B\) and \(C\) for which \(\frac { x ^ { 3 } + x ^ { 2 } + 9 x - 1 } { x ^ { 3 } + x ^ { 2 } + 4 x + 4 } \equiv A + \frac { B x + C } { x ^ { 3 } + x ^ { 2 } + 4 x + 4 }\).
  2. Hence express \(\frac { x ^ { 3 } + x ^ { 2 } + 9 x - 1 } { x ^ { 3 } + x ^ { 2 } + 4 x + 4 }\) using partial fractions.
  3. Using your answer to part (b), determine \(\int _ { 0 } ^ { 2 } \frac { x ^ { 3 } + x ^ { 2 } + 9 x - 1 } { x ^ { 3 } + x ^ { 2 } + 4 x + 4 } \mathrm {~d} x\) expressing your answer in the form \(a + \ln b + c \pi\) where \(a\) is an integer, and \(b\) and \(c\) are both rational.