CAIE Further Paper 1 (Further Paper 1) 2022 November

Question 1
View details
1
  1. Use the list of formulae (MF19) to find \(\sum _ { r = 1 } ^ { n } r ( r + 2 )\) in terms of \(n\), simplifying your answer.
  2. Express \(\frac { 1 } { r ( r + 2 ) }\) in partial fractions and hence find \(\sum _ { \mathrm { r } = 1 } ^ { \mathrm { n } } \frac { 1 } { \mathrm { r } ( \mathrm { r } + 2 ) }\) in terms of \(n\).
  3. Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ( r + 2 ) }\).
Question 2
View details
2 The equation \(x ^ { 4 } + 3 x ^ { 2 } + 2 x + 6 = 0\) has roots \(\alpha , \beta , \gamma , \delta\).
  1. Find a quartic equation whose roots are \(\frac { 1 } { \alpha ^ { 2 } } , \frac { 1 } { \beta ^ { 2 } } , \frac { 1 } { \gamma ^ { 2 } } , \frac { 1 } { \delta ^ { 2 } }\) and state the value of \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } } + \frac { 1 } { \delta ^ { 2 } }\).
  2. Find the value of \(\beta ^ { 2 } \gamma ^ { 2 } \delta ^ { 2 } + \alpha ^ { 2 } \gamma ^ { 2 } \delta ^ { 2 } + \alpha ^ { 2 } \beta ^ { 2 } \delta ^ { 2 } + \alpha ^ { 2 } \beta ^ { 2 } \gamma ^ { 2 }\).
  3. Find the value of \(\frac { 1 } { \alpha ^ { 4 } } + \frac { 1 } { \beta ^ { 4 } } + \frac { 1 } { \gamma ^ { 4 } } + \frac { 1 } { \delta ^ { 4 } }\).
Question 3 4 marks
View details
3 The matrix \(\mathbf { M }\) is given by \(\mathbf { M } = \left( \begin{array} { c c } 1 & 0
0 & k \end{array} \right) \left( \begin{array} { c c } 1 & 0
k & 1 \end{array} \right)\), where \(k\) is a constant and \(k \neq 0\) or 1 .
  1. The matrix \(\mathbf { M }\) represents a sequence of two geometrical transformations. State the type of each transformation, and make clear the order in which they are applied.
  2. Write \(\mathbf { M } ^ { - 1 }\) as the product of two matrices, neither of which is \(\mathbf { I }\).
  3. Show that the invariant points of the transformation represented by \(\mathbf { M }\) lie on the line \(\mathrm { y } = \frac { \mathrm { k } ^ { 2 } } { 1 - \mathrm { k } } \mathrm { x }\). [4]
  4. The triangle \(A B C\) in the \(x - y\) plane is transformed by \(\mathbf { M }\) onto triangle \(D E F\). Find the value of \(k\) for which the area of triangle \(D E F\) is equal to the area of triangle \(A B C\).
Question 4
View details
4 The function f is such that \(\mathrm { f } ^ { \prime \prime } ( x ) = \mathrm { f } ( x )\).
Prove by mathematical induction that, for every positive integer \(n\), $$\frac { d ^ { 2 n - 1 } } { d x ^ { 2 n - 1 } } ( x f ( x ) ) = x f ^ { \prime } ( x ) + ( 2 n - 1 ) f ( x )$$
Question 5
View details
5 The curve \(C\) has polar equation \(r = \operatorname { asec } ^ { 2 } \theta\), where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  1. Sketch \(C\), stating the polar coordinates of the point of intersection of \(C\) with the initial line and also with the half-line \(\theta = \frac { 1 } { 4 } \pi\).
  2. Find the maximum distance of a point of \(C\) from the initial line.
  3. Find the area of the region enclosed by \(C\), the initial line and the half-line \(\theta = \frac { 1 } { 4 } \pi\).
  4. Find, in the form \(y = f ( x )\), the Cartesian equation of \(C\).
Question 6
View details
6 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = 2 \mathbf { i } + \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } + 2 \mathbf { k } )\) and \(\mathbf { r } = 2 \mathbf { j } + 6 \mathbf { k } + \mu ( \mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k } )\) respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length \(P Q\).
    The plane \(\Pi _ { 1 }\) contains \(P Q\) and \(l _ { 1 }\).
    The plane \(\Pi _ { 2 }\) contains \(P Q\) and \(l _ { 2 }\).
    1. Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \mathbf { s b } + \mathbf { t c }\).
    2. Find an equation of \(\Pi _ { 2 }\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
Question 7
View details
7 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } - \mathrm { x } } { \mathrm { x } + 1 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Find the exact coordinates of the stationary points on \(C\).
  3. Sketch \(C\), stating the coordinates of any intersections with the axes.
  4. Sketch the curve with equation \(y = \left| \frac { x ^ { 2 } - x } { x + 1 } \right|\) and find in exact form the set of values of \(x\) for which \(\left| \frac { x ^ { 2 } - x } { x + 1 } \right| < 6\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.