OCR Further Additional Pure AS 2019 June — Question 8

Exam BoardOCR
ModuleFurther Additional Pure AS (Further Additional Pure AS)
Year2019
SessionJune
TopicVector Product and Surfaces

8 The motion of two remote controlled helicopters \(P\) and \(Q\) is modelled as two points moving along straight lines. Helicopter \(P\) moves on the line \(\mathbf { r } = \left( \begin{array} { r } 2 + 4 p
- 3 + p
1 + 3 p \end{array} \right)\) and helicopter \(Q\) moves on the line \(\mathbf { r } = \left( \begin{array} { l } 5 + 8 q
2 + q
5 + 4 q \end{array} \right)\).
The function \(z\) denotes \(( P Q ) ^ { 2 }\), the square of the distance between \(P\) and \(Q\).
  1. Show that \(z = 26 p ^ { 2 } + 81 q ^ { 2 } - 90 p q - 58 p + 90 q + 50\).
  2. Use partial differentiation to find the values of \(p\) and \(q\) for which \(z\) has a stationary point.
  3. With the aid of a diagram, explain why this stationary point must be a minimum point, rather than a maximum point or a saddle point.
  4. Hence find the shortest possible distance between the two helicopters. The model is now refined by modelling each helicopter as a sphere of radius 0.5 units.
  5. Explain how this will change your answer to part (d). \section*{END OF QUESTION PAPER}