4 A particle \(P\) of mass 2.4 kg is moving in a straight line \(O A\) on a horizontal plane. \(P\) is acted on by a force of magnitude 30 N in the direction of motion. The distance \(O A\) is 10 m .
- Find the work done by this force as \(P\) moves from \(O\) to \(A\).
The motion of \(P\) is resisted by a constant force of magnitude \(R \mathrm {~N}\). The velocity of \(P\) increases from \(12 \mathrm {~ms} ^ { - 1 }\) at \(O\) to \(18 \mathrm {~ms} ^ { - 1 }\) at \(A\).
- Find the value of \(R\).
- Find the average power used in overcoming the resistance force on \(P\) as it moves from \(O\) to \(A\).
When \(P\) reaches \(A\) it collides directly with a particle \(Q\) of mass 1.6 kg which was at rest at \(A\) before the collision. The impulse exerted on \(Q\) by \(P\) as a result of the collision is 17.28 Ns .
- Find the speed of \(Q\) after the collision.
- Hence show that the collision is inelastic.