4
\includegraphics[max width=\textwidth, alt={}, center]{5960a9cf-2c51-4c07-9973-c29604762df7-3_218_1335_251_367}
Three particles \(A\), \(B\) and \(C\) are free to move in the same straight line on a large smooth horizontal surface. Their masses are \(1.2 \mathrm {~kg} , 1.8 \mathrm {~kg}\) and \(m \mathrm {~kg}\) respectively (see diagram). The coefficient of restitution in collisions between any two of them is \(\frac { 3 } { 4 }\). Initially, \(B\) and \(C\) are at rest and \(A\) is moving with a velocity of \(4.0 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) towards \(B\).
- Show that immediately after the collision between \(A\) and \(B\) the speed of \(B\) is \(2.8 \mathrm {~ms} ^ { - 1 }\).
- Find the velocity of \(A\) immediately after this collision.
\(B\) subsequently collides with \(C\). - Find, in terms of \(m\), the velocity of \(B\) after its collision with \(C\).
- Given that the direction of motion of \(B\) is reversed by the collision with \(C\), find the range of possible values of \(m\).