OCR Further Mechanics AS 2018 June — Question 2

Exam BoardOCR
ModuleFurther Mechanics AS (Further Mechanics AS)
Year2018
SessionJune
TopicMomentum and Collisions 2

2 A particle \(P\) of mass 3.5 kg is moving down a line of greatest slope of a rough inclined plane. At the instant that its speed is \(2.1 \mathrm {~ms} ^ { - 1 } P\) is at a point \(A\) on the plane. At that instant an impulse of magnitude 33.6 Ns , directed up the line of greatest slope, acts on \(P\).
  1. Show that as a result of the impulse \(P\) starts moving up the plane with a speed of \(7.5 \mathrm {~ms} ^ { - 1 }\). While still moving up the plane, \(P\) has speed \(1.5 \mathrm {~ms} ^ { - 1 }\) at a point \(B\) where \(A B = 4.2 \mathrm {~m}\). The plane is inclined at an angle of \(20 ^ { \circ }\) to the horizontal. The frictional force exerted by the plane on \(P\) is modelled as constant.
  2. Calculate the work done against friction as \(P\) moves from \(A\) to \(B\).
  3. Hence find the magnitude of the frictional force acting on \(P\).
    \(P\) first comes to instantaneous rest at point \(C\) on the plane.
  4. Calculate \(A C\).