OCR Further Statistics AS 2020 November — Question 6

Exam BoardOCR
ModuleFurther Statistics AS (Further Statistics AS)
Year2020
SessionNovember
TopicPoisson Distribution
TypeMean-variance comparison for Poisson validation

6 A statistician investigates the number, \(F\), of signal failures per week on a railway network.
  1. The statistician assumes that signal failures occur randomly. Explain what this statement means.
  2. State two further assumptions needed for \(F\) to be well modelled by a Poisson distribution. In a random sample of 50 weeks, the statistician finds that the mean number of failures per week is 1.61, with standard deviation 1.28.
  3. Explain whether this suggests that \(F\) is likely to be well modelled by a Poisson distribution. Assume first that \(F \sim \operatorname { Po } ( 1.61 )\).
  4. Write down an exact expression for \(\mathrm { P } ( F = 0 )\).
  5. Complete the table in the Printed Answer Booklet to show the probabilities of different values of \(F\), correct to three significant figures.
    Value of \(F\)01\(\geqslant 2\)
    Probability0.200
    After further investigation, the statistician decides to use a different model for the distribution of \(F\). In this model it is now assumed that \(\mathrm { P } ( F = 0 )\) is still 0.200 , but that if one failure occurs, there is an increased probability that further failures occur.
  6. Explain the effect of this assumption on the value of \(\mathrm { P } ( F = 1 )\).