OCR Further Statistics AS 2024 June — Question 3

Exam BoardOCR
ModuleFurther Statistics AS (Further Statistics AS)
Year2024
SessionJune
TopicBivariate data
TypeCalculate r from summary statistics

3 The ages, \(x\) years, and the reaction time, \(t\) seconds, in an experiment carried out on a sample of 15 volunteers are summarised as follows.
\(n = 15 \quad \sum x = 762 \quad \sum t = 8.7 \quad \sum x ^ { 2 } = 44204 \quad \sum t ^ { 2 } = 5.65 \quad \sum x t = 490.1\)
  1. Calculate the value of the product moment correlation coefficient between \(x\) and \(t\).
  2. Calculate the equation of the line of regression of \(t\) on \(x\). Give your answer in the form \(\mathrm { t } = \mathrm { a } + \mathrm { bx }\) where \(a\) and \(b\) are constants to be determined.
  3. Explain the relevance of the quantity \(\sum ( t - a - b x ) ^ { 2 }\) to your answer to part (b).
  4. Estimate the reaction time, in seconds, for a volunteer aged 42. It is subsequently decided to measure the reaction time in tenths of a second rather than in seconds (so, for example, a time of 0.6 seconds would now be recorded as 6 ).
    1. State what effect, if any, this change would have on your answer to part (a).
    2. State what effect, if any, this change would have on your answer to part (b). It is known that the sample of 15 volunteers consisted almost entirely of students and retired people.
  5. Using this information, and the value of the product moment correlation coefficient, comment on the reliability of your estimate in part (d).