OCR Further Pure Core AS 2020 November — Question 8

Exam BoardOCR
ModuleFurther Pure Core AS (Further Pure Core AS)
Year2020
SessionNovember
TopicComplex Numbers Argand & Loci

8 Two loci, \(C _ { 1 }\) and \(C _ { 2 }\), are defined by $$\begin{aligned} & C _ { 1 } = \left\{ z : | z | = \left| z - 4 d ^ { 2 } - 36 \right| \right\}
& C _ { 2 } = \left\{ z : \arg ( z - 12 d - 3 i ) = \frac { 1 } { 4 } \pi \right\} \end{aligned}$$ where \(d\) is a real number.
  1. Find, in terms of \(d\), the complex number which is represented on an Argand diagram by the point of intersection of \(C _ { 1 }\) and \(C _ { 2 }\).
    [0pt] [You may assume that \(C _ { 1 } \cap C _ { 2 } \neq \varnothing\).]
  2. Explain why the solution found in part (a) is not valid when \(d = 3\). \section*{END OF QUESTION PAPER} \section*{OCR
    Oxford Cambridge and RSA}