OCR Further Pure Core AS 2020 November — Question 7

Exam BoardOCR
ModuleFurther Pure Core AS (Further Pure Core AS)
Year2020
SessionNovember
TopicVectors: Lines & Planes

7 The equations of two intersecting lines are
\(\mathbf { r } = \left( \begin{array} { c } - 12
a
- 1 \end{array} \right) + \lambda \left( \begin{array} { l } 2
2
1 \end{array} \right) \quad \mathbf { r } = \left( \begin{array} { l } 2
0
5 \end{array} \right) + \mu \left( \begin{array} { c } - 3
1
- 1 \end{array} \right)\)
where \(a\) is a constant.
  1. Find a vector, \(\mathbf { b }\), which is perpendicular to both lines.
  2. Show that \(\mathbf { b } \cdot \left( \begin{array} { c } - 12
    a
    - 1 \end{array} \right) = \mathbf { b } \cdot \left( \begin{array} { l } 2
    0
    5 \end{array} \right)\).
  3. Hence, or otherwise, find the value of \(a\).