| Exam Board | OCR |
| Module | Further Pure Core AS (Further Pure Core AS) |
| Year | 2024 |
| Session | June |
| Topic | Roots of polynomials |
7 In this question you must show detailed reasoning.
The roots of the equation \(2 x ^ { 3 } - 3 x ^ { 2 } - 3 x + 5 = 0\) are \(\alpha , \beta\) and \(\gamma\).
By considering \(( \alpha + \beta + \gamma ) ^ { 2 }\) and \(( \alpha \beta + \beta \gamma + \gamma \alpha ) ^ { 2 }\), determine a cubic equation with integer coefficients whose roots are \(\frac { \alpha \beta } { \gamma } , \frac { \beta \gamma } { \alpha }\) and \(\frac { \gamma \alpha } { \beta }\).