OCR Further Pure Core AS (Further Pure Core AS) 2024 June

Question 1
View details
1 Use a matrix method to determine the solution of the following simultaneous equations. $$\begin{aligned} 2 x - 3 y + z & = 1
x - 2 y - 4 z & = 40
5 x + 6 y - z & = 61 \end{aligned}$$
Question 2
View details
2 In this question you must show detailed reasoning.
  1. Express \(\frac { 8 + \mathrm { i } } { 2 - \mathrm { i } }\) in the form \(\mathrm { a } + \mathrm { bi }\) where \(a\) and \(b\) are real.
  2. Solve the equation \(4 x ^ { 2 } - 8 x + 5 = 0\). Give your answer(s) in the form \(\mathrm { c } + \mathrm { di }\) where \(c\) and \(d\) are real.
Question 3
View details
3
    1. Find \(\left( \begin{array} { c } 1
      2
      - 1 \end{array} \right) \times \left( \begin{array} { c } 3
      5
      - 2 \end{array} \right)\).
    2. State a geometrical relationship between the answer to part (a)(i) and the vectors \(\left( \begin{array} { c } 1
      2
      - 1 \end{array} \right)\) and \(\left( \begin{array} { c } 3
      5
      - 2 \end{array} \right)\).
    3. Verify the relationship stated in part (a)(ii).
  1. Find the angle between the vectors \(2 \mathbf { i } - 2 \mathbf { j } + \mathbf { k }\) and \(4 \mathbf { i } - \mathbf { j } + 8 \mathbf { k }\).
Question 4
View details
4 The Argand diagram shows a circle of radius 3. The centre of the circle is the point which represents the complex number \(4 - 2 \mathrm { i }\).
\includegraphics[max width=\textwidth, alt={}, center]{4159328b-475e-4f29-91f2-f2f343573251-3_417_775_349_644}
  1. Use set notation to define the locus of complex numbers, \(z\), represented by points which lie on the circle. The locus \(L\) is defined by \(\mathrm { L } = \{ \mathrm { z } : \mathrm { z } \in \mathbb { C } , | \mathrm { z } - \mathrm { i } | = | \mathrm { z } + 2 | \}\).
  2. On the Argand diagram in the Printed Answer Booklet, sketch and label the locus \(L\). You are given that the locus \(\left\{ z : z \in \mathbb { C } , \arg ( z - 1 ) = \frac { 1 } { 4 } \pi , \operatorname { Re } ( z ) = 3 \right\}\) contains only one number.
  3. Find this number.
Question 5
View details
5 The line through points \(A ( 8 , - 7 , - 2 )\) and \(B ( 11 , - 9,0 )\) is denoted by \(L _ { 1 }\).
  1. Find a vector equation for \(L _ { 1 }\).
  2. Determine whether the point \(( 26 , - 19 , - 14 )\) lies on \(L _ { 1 }\). The line \(L _ { 2 }\) passes through the origin, \(O\), and intersects \(L _ { 1 }\) at the point \(C\). The lines \(L _ { 1 }\) and \(L _ { 2 }\) are perpendicular.
  3. By using the fact that \(C\) lies on \(L _ { 1 }\), find a vector equation for \(L _ { 2 }\).
  4. Hence find the shortest distance from \(O\) to \(L _ { 1 }\).
Question 6
View details
6 You are given that \(\mathbf { A } = \left( \begin{array} { l l } 1 & a
0 & 1 \end{array} \right)\) where \(a\) is a constant.
Prove by induction that \(\mathbf { A } ^ { \mathrm { n } } = \left( \begin{array} { c c } 1 & \text { an }
0 & 1 \end{array} \right)\) for all integers \(n \geqslant 1\).
Question 7
View details
7 In this question you must show detailed reasoning.
The roots of the equation \(2 x ^ { 3 } - 3 x ^ { 2 } - 3 x + 5 = 0\) are \(\alpha , \beta\) and \(\gamma\).
By considering \(( \alpha + \beta + \gamma ) ^ { 2 }\) and \(( \alpha \beta + \beta \gamma + \gamma \alpha ) ^ { 2 }\), determine a cubic equation with integer coefficients whose roots are \(\frac { \alpha \beta } { \gamma } , \frac { \beta \gamma } { \alpha }\) and \(\frac { \gamma \alpha } { \beta }\).
Question 8
View details
8 Three transformations, \(T _ { A } , T _ { B }\) and \(T _ { C }\), are represented by the matrices \(A , B\) and \(\mathbf { C }\) respectively. You are given that \(\mathbf { A } = \left( \begin{array} { l l } 1 & 0
2 & 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { c c } 1 & 0
0 & - 1 \end{array} \right)\).
  1. Find the matrix which represents the inverse transformation of \(T _ { A }\).
  2. By considering matrix multiplication, determine whether \(T _ { A }\) followed by \(T _ { B }\) is the same transformation as \(T _ { B }\) followed by \(T _ { A }\). Transformations R and S are each defined as being the result of successive transformations, as specified in the table.
    TransformationFirst transformationfollowed by
    R\(\mathrm { T } _ { \mathrm { A } }\) followed by \(\mathrm { T } _ { \mathrm { B } }\)\(\mathrm { T } _ { \mathrm { C } }\)
    S\(\mathrm { T } _ { \mathrm { A } }\)\(\mathrm { T } _ { \mathrm { B } }\) followed by \(\mathrm { T } _ { \mathrm { C } }\)
  3. Explain, using a property of matrix multiplication, why R and S are the same transformations. A quadrilateral, \(Q\), has vertices \(D , E , F\) and \(G\) in anticlockwise order from \(D\). Under transformation \(\mathrm { R } , Q ^ { \prime }\) s image, \(Q ^ { \prime }\), has vertices \(D ^ { \prime } , E ^ { \prime } , F ^ { \prime }\) and \(G ^ { \prime }\) (where \(D ^ { \prime }\) is the image of \(D\), etc). The area of \(Q\), in suitable units, is 5 . You are given that det \(\mathbf { C } = a ^ { 2 } + 1\) where \(a\) is a real constant.
    1. Determine the order of the vertices of \(Q ^ { \prime }\), starting anticlockwise from \(D ^ { \prime }\).
    2. Find, in terms of \(a\), the area of \(Q ^ { \prime }\).
    3. Explain whether the inverse transformation for R exists. Justify your answer.
Question 9
View details
9 In this question you must show detailed reasoning. You are given that \(a\) is a real root of the equation \(x ^ { 4 } + x ^ { 3 } + 3 x ^ { 2 } - 5 x = 0\).
You are also given that \(a + 2 + 3 \mathrm { i }\) is one root of the equation
\(z ^ { 4 } - 2 ( 1 + a ) z ^ { 3 } + ( 21 a - 10 ) z ^ { 2 } + ( 86 - 80 a ) z + ( 285 a - 195 ) = 0\). Determine all possible values of \(z\).