2 Matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } a & 1
- 1 & 3 \end{array} \right)\) and \(\mathbf { B } = \left( \begin{array} { l l } - 2 & 5
- 1 & 0 \end{array} \right)\) where \(a\) is a constant.
- Find the following matrices.
- \(\mathbf { A } + \mathbf { B }\)
- AB
- \(\mathbf { A } ^ { 2 }\)
- Given that the determinant of \(\mathbf { A }\) is 25 find the value of \(a\).
- You are given instead that the following system of equations does not have a unique solution.
$$\begin{array} { r }
a x + y = - 2
- x + 3 y = - 6
\end{array}$$
Determine the value of \(a\).