8 Abdoallah wants to write the complex number \(- 1 + \mathrm { i } \sqrt { 3 }\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\) where \(r \geq 0\) and \(- \pi < \theta \leq \pi\)
Here is his method:
$$\begin{array} { r l r l }
r & = \sqrt { ( - 1 ) ^ { 2 } + ( \sqrt { 3 } ) ^ { 2 } } & & \tan \theta = \frac { \sqrt { 3 } } { - 1 }
& = \sqrt { 1 + 3 } & & \Rightarrow
& = \sqrt { 4 } & & \tan \theta = - \sqrt { 3 }
& = 2 & & \theta = \tan ^ { - 1 } ( - \sqrt { 3 } )
& & \theta = - \frac { \pi } { 3 }
& - 1 + i \sqrt { 3 } = 2 \left( \cos \left( - \frac { \pi } { 3 } \right) + i \sin \left( - \frac { \pi } { 3 } \right) \right)
\end{array}$$
There is an error in Abdoallah's method.
8
- Show that Abdoallah's answer is wrong by writing
$$2 \left( \cos \left( - \frac { \pi } { 3 } \right) + i \sin \left( - \frac { \pi } { 3 } \right) \right)$$
in the form \(x + \mathrm { i } y\)
Simplify your answer.
8 - Explain the error in Abdoallah's method.
8 - Express \(- 1 + \mathrm { i } \sqrt { 3 }\) in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\)
8 - Write down the complex conjugate of \(- 1 + i \sqrt { 3 }\)