A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Addition & Double Angle Formulae
Q14
OCR MEI Paper 3 2021 November — Question 14
Exam Board
OCR MEI
Module
Paper 3 (Paper 3)
Year
2021
Session
November
Topic
Addition & Double Angle Formulae
14
Show that $$\arctan \left( \frac { 1 } { n + 1 } \right) + \arctan \left( \frac { 1 } { n ^ { 2 } + n + 1 } \right) = \arctan \left( \frac { 1 } { n } \right) \Rightarrow \arctan \left( \frac { 1 } { 2 } \right) + \arctan \left( \frac { 1 } { 3 } \right) = \arctan 1 .$$
Use the arctan addition formula in line 23 to show that $$\arctan \left( \frac { 1 } { n + 1 } \right) + \arctan \left( \frac { 1 } { n ^ { 2 } + n + 1 } \right) = \arctan \left( \frac { 1 } { n } \right) , \text { as given in line } 39 .$$
This paper
(15 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15