OCR MEI Paper 2 2019 June — Question 13

Exam BoardOCR MEI
ModulePaper 2 (Paper 2)
Year2019
SessionJune
TopicGeometric Sequences and Series

13 The population of Melchester is 185207. During a nationwide flu epidemic the number of new cases in Melchester are recorded each day. The results from the first three days are shown in Fig. 13. \begin{table}[h]
Day123
Number of new cases82472
\captionsetup{labelformat=empty} \caption{Fig. 13}
\end{table} A doctor notices that the numbers of new cases on successive days are in geometric progression.
  1. Find the common ratio for this geometric progression. The doctor uses this geometric progression to model the number of new cases of flu in Melchester.
  2. According to the model, how many new cases will there be on day 5?
  3. Find a formula for the total number of cases from day 1 to day \(n\) inclusive according to this model, simplifying your answer.
  4. Determine the maximum number of days for which the model could be viable in Melchester.
  5. State, with a reason, whether it is likely that the model will be viable for the number of days found in part (d).