5 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } - x - 1 } { x ^ { 2 } + x + 1 }\).
- Show that \(C\) has no vertical asymptotes and state the equation of the horizontal asymptote of \(C\).
- Find the coordinates of the stationary points on \(C\).
- Sketch \(C\), stating the coordinates of the intersections with the axes.
- Sketch the curve with equation \(y = \left| \frac { 2 x ^ { 2 } - x - 1 } { x ^ { 2 } + x + 1 } \right|\) and state the set of values of \(k\) for which \(\left| \frac { 2 x ^ { 2 } - x - 1 } { x ^ { 2 } + x + 1 } \right| = k\) has 4 distinct real solutions.