2 The points \(A , B , C\) have position vectors
$$4 \mathbf { i } - 4 \mathbf { j } + \mathbf { k } , \quad - 4 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k } , \quad 4 \mathbf { i } - \mathbf { j } - 2 \mathbf { k } ,$$
respectively, relative to the origin \(O\).
- Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
- Find the perpendicular distance from \(O\) to the plane \(A B C\).
- The point \(D\) has position vector \(2 \mathbf { i } + 3 \mathbf { j } - 3 \mathbf { k }\).
Find the coordinates of the point of intersection of the line \(O D\) with the plane \(A B C\).