Edexcel Paper 1 Specimen — Question 5

Exam BoardEdexcel
ModulePaper 1 (Paper 1)
SessionSpecimen
TopicFactor & Remainder Theorem
TypeShow equation reduces to polynomial

  1. \(\mathrm { f } ( x ) = x ^ { 3 } + a x ^ { 2 } - a x + 48\), where \(a\) is a constant
Given that \(\mathrm { f } ( - 6 ) = 0\)
    1. show that \(a = 4\)
    2. express \(\mathrm { f } ( x )\) as a product of two algebraic factors. Given that \(2 \log _ { 2 } ( x + 2 ) + \log _ { 2 } x - \log _ { 2 } ( x - 6 ) = 3\)
  1. show that \(x ^ { 3 } + 4 x ^ { 2 } - 4 x + 48 = 0\)
  2. hence explain why $$2 \log _ { 2 } ( x + 2 ) + \log _ { 2 } x - \log _ { 2 } ( x - 6 ) = 3$$ has no real roots.