- The function f is defined by
$$f ( x ) = 3 + \sqrt { x - 2 } \quad x \in \mathbb { R } \quad x > 2$$
- State the range of f
- Find f-1
The function \(g\) is defined by
$$g ( x ) = \frac { 15 } { x - 3 } \quad x \in \mathbb { R } \quad x \neq 3$$
- Find \(g f ( 6 )\)
- Find the exact value of the constant \(a\) for which
$$\mathrm { f } \left( a ^ { 2 } + 2 \right) = \mathrm { g } ( a )$$