The complex number \(u\) is given by \(u = - 3 - ( 2 \sqrt { } 10 )\) i. Showing all necessary working and without using a calculator, find the square roots of \(u\). Give your answers in the form \(a + \mathrm { i } b\), where the numbers \(a\) and \(b\) are real and exact.
On a sketch of an Argand diagram shade the region whose points represent complex numbers \(z\) satisfying the inequalities \(| z - 3 - \mathrm { i } | \leqslant 3 , \arg z \geqslant \frac { 1 } { 4 } \pi\) and \(\operatorname { Im } z \geqslant 2\), where \(\operatorname { Im } z\) denotes the imaginary part of the complex number \(z\). [0pt]
[5]
If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.