A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure and Mechanics
Indefinite & Definite Integrals
Q7
Edexcel AS Paper 1 2020 June — Question 7
Exam Board
Edexcel
Module
AS Paper 1 (AS Paper 1)
Year
2020
Session
June
Topic
Indefinite & Definite Integrals
Given that \(k\) is a positive constant and \(\int _ { 1 } ^ { k } \left( \frac { 5 } { 2 \sqrt { x } } + 3 \right) \mathrm { d } x = 4\)
show that \(3 k + 5 \sqrt { k } - 12 = 0\)
Hence, using algebra, find any values of \(k\) such that
$$\int _ { 1 } ^ { k } \left( \frac { 5 } { 2 \sqrt { x } } + 3 \right) \mathrm { d } x = 4$$
This paper
(14 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14