Express \(- 3 x ^ { 2 } + 12 x + 2\) in the form \(- 3 ( x - a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants.
The one-one function f is defined by \(\mathrm { f } : x \mapsto - 3 x ^ { 2 } + 12 x + 2\) for \(x \leqslant k\).
State the largest possible value of the constant \(k\).
It is now given that \(k = - 1\).
State the range of f.
Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
The result of translating the graph of \(y = \mathrm { f } ( x )\) by \(\binom { - 3 } { 1 }\) is the graph of \(y = \mathrm { g } ( x )\).
Express \(\mathrm { g } ( x )\) in the form \(p x ^ { 2 } + q x + r\), where \(p , q\) and \(r\) are constants.