OCR MEI D2 2016 June — Question 5

Exam BoardOCR MEI
ModuleD2 (Decision Mathematics 2)
Year2016
SessionJune
TopicNumber Theory

\(\mathbf { 5 }\) & 15 & 16 & 12 & 14 & 24
\hline \end{tabular} \end{center}
\cline { 2 - 6 } \multicolumn{1}{c|}{}\(\mathbf { 1 }\)\(\mathbf { 2 }\)\(\mathbf { 3 }\)\(\mathbf { 4 }\)\(\mathbf { 5 }\)
\(\mathbf { 1 }\)22245
\(\mathbf { 2 }\)13333
\(\mathbf { 3 }\)22245
\(\mathbf { 4 }\)13335
\(\mathbf { 5 }\)13343
  1. Perform the fourth iteration of the algorithm, and show that there is no change to either matrix in the final iteration.
  2. Show how to use the matrices to give the shortest distance and the shortest route from vertex \(\mathbf { 1 }\) to vertex 2.
  3. Draw the complete network of shortest distances.
  4. Starting at vertex 1, apply the nearest neighbour algorithm to the complete network of shortest distances to find a Hamilton cycle. Give the length of your cycle and interpret it in the original network.
  5. By temporarily deleting vertex \(\mathbf { 1 }\) and its connecting arcs from the complete network of shortest distances, find a lower bound for the solution to the Travelling Salesperson's Problem in that network. Say what this implies in the original network.