8. The tableau below is the initial tableau for a maximising linear programming problem.
| Basic variable | \(x\) | \(y\) | \(z\) | r | \(s\) | \(t\) | Value |
| \(r\) | 7 | 10 | 10 | 1 | 0 | 0 | 3600 |
| \(s\) | 6 | 9 | 12 | 0 | 1 | 0 | 3600 |
| \(t\) | 2 | 3 | 4 | 0 | 0 | 1 | 2400 |
| \(P\) | -35 | -55 | -60 | 0 | 0 | 0 | 0 |
- Write down the four equations represented in the initial tableau above.
(4) - Taking the most negative number in the profit row to indicate the pivot column at each stage, solve this linear programming problem. State the row operations that you use.
- State the values of the objective function and each variable.
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Operations |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Operations |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Operations |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Operations |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Operations |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |