AQA D2 2011 June — Question 4

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2011
SessionJune
TopicFixed Point Iteration

4 A linear programming problem involving variables \(x , y\) and \(z\) is to be solved. The objective function to be maximised is \(P = 2 x + 6 y + k z\), where \(k\) is a constant. The initial Simplex tableau is given below.
\(\boldsymbol { P }\)\(x\)\(y\)\(\boldsymbol { Z }\)\(\boldsymbol { s }\)\(\boldsymbol { t }\)\(\boldsymbol { u }\)value
1-2-6\(- k\)0000
0531010015
076401028
043600112
  1. In addition to \(x \geqslant 0 , y \geqslant 0 , z \geqslant 0\), write down three inequalities involving \(x , y\) and \(z\) for this problem.
    1. By choosing the first pivot from the \(\boldsymbol { y }\)-column, perform one iteration of the Simplex method.
    2. Given that the optimal value has not been reached, find the possible values of \(k\).
  2. In the case when \(k = 20\) :
    1. perform one further iteration;
    2. interpret the final tableau and state the values of the slack variables.