AQA D2 2010 January — Question 2

Exam BoardAQA
ModuleD2 (Decision Mathematics 2)
Year2010
SessionJanuary
TopicNon-parametric tests

2 The following table shows the times taken, in minutes, by five people, Ron, Sam, Tim, Vic and Zac, to carry out the tasks \(1,2,3\) and 4 . Sam takes \(x\) minutes, where \(8 \leqslant x \leqslant 12\), to do task 2.
RonSamTimVicZac
Task 1879108
Task 29\(x\)8711
Task 312109910
Task 411981111
Each of the four tasks is to be given to a different one of the five people so that the total time for the four tasks is minimised.
  1. Modify the table of values by adding an extra row of non-zero values so that the Hungarian algorithm can be applied.
    1. Use the Hungarian algorithm, reducing columns first and then rows, to reduce the matrix to a form, in terms of \(x\), from which the optimum matching can be made.
    2. Hence find the possible way of allocating the four tasks so that the total time is minimised.
    3. Find the minimum total time.
  2. After special training, Sam is able to complete task 2 in 7 minutes and is assigned to task 2. Determine the possible ways of allocating the other three tasks so that the total time is minimised.