OCR D1 2016 June — Question 3

Exam BoardOCR
ModuleD1 (Decision Mathematics 1)
Year2016
SessionJune
TopicThe Simplex Algorithm

3 A problem to maximise \(P\) as a function of \(x , y\) and \(z\) is represented by the initial Simplex tableau below.
\(P\)\(x\)\(y\)\(z\)\(s\)\(t\)RHS
1- 1023000
050- 51060
043001100
  1. Write down \(P\) as a function of \(x , y\) and \(z\).
  2. Write down the constraints as inequalities involving \(x , y\) and \(z\).
  3. Carry out one iteration of the Simplex algorithm. After a second iteration of the Simplex algorithm the tableau is as given below.
    \(P\)\(x\)\(y\)\(z\)\(s\)\(t\)RHS
    107.2500.61.75211
    010.75000.2525
    000.751- 0.20.2513
  4. Explain how you know that the optimal solution has been achieved.
  5. Write down the values of \(x , y\) and \(z\) that maximise \(P\). Write down the optimal value of \(P\).