CAIE P3 2012 November — Question 10

Exam BoardCAIE
ModuleP3 (Pure Mathematics 3)
Year2012
SessionNovember
TopicVectors: Lines & Planes

10 With respect to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by $$\overrightarrow { O A } = \left( \begin{array} { r } 3
- 2
4 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 2
- 1
7 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 1
- 5
- 3 \end{array} \right)$$ The plane \(m\) is parallel to \(\overrightarrow { O C }\) and contains \(A\) and \(B\).
  1. Find the equation of \(m\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the length of the perpendicular from \(C\) to the line through \(A\) and \(B\).
This paper (2 questions)
View full paper