CAIE P3 (Pure Mathematics 3) 2012 November

Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{346e8866-ca23-4ea6-81bf-bf62502a16d1-3_397_750_255_699} The diagram shows the curve \(y = \mathrm { e } ^ { - \frac { 1 } { 2 } x ^ { 2 } } \sqrt { } \left( 1 + 2 x ^ { 2 } \right)\) for \(x \geqslant 0\), and its maximum point \(M\).
  1. Find the exact value of the \(x\)-coordinate of \(M\).
  2. The sequence of values given by the iterative formula $$x _ { n + 1 } = \sqrt { } \left( \ln \left( 4 + 8 x _ { n } ^ { 2 } \right) \right) ,$$ with initial value \(x _ { 1 } = 2\), converges to a certain value \(\alpha\). State an equation satisfied by \(\alpha\) and hence show that \(\alpha\) is the \(x\)-coordinate of a point on the curve where \(y = 0.5\).
  3. Use the iterative formula to determine \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 10
View details
10 With respect to the origin \(O\), the points \(A , B\) and \(C\) have position vectors given by $$\overrightarrow { O A } = \left( \begin{array} { r } 3
- 2
4 \end{array} \right) , \quad \overrightarrow { O B } = \left( \begin{array} { r } 2
- 1
7 \end{array} \right) \quad \text { and } \quad \overrightarrow { O C } = \left( \begin{array} { r } 1
- 5
- 3 \end{array} \right)$$ The plane \(m\) is parallel to \(\overrightarrow { O C }\) and contains \(A\) and \(B\).
  1. Find the equation of \(m\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the length of the perpendicular from \(C\) to the line through \(A\) and \(B\).