7 The diagram shows the sketch of a curve \(C _ { 1 }\).
\includegraphics[max width=\textwidth, alt={}, center]{7b4a1237-bb28-4cba-84b1-35fa91d87408-18_362_734_360_635}
The polar equation of the curve \(C _ { 1 }\) is
$$r = 1 + \cos 2 \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 }$$
- Find the area of the region bounded by the curve \(C _ { 1 }\).
- The curve \(C _ { 2 }\) whose polar equation is
$$r = 1 + \sin \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 }$$
intersects the curve \(C _ { 1 }\) at the pole \(O\) and at the point \(A\). The straight line drawn through \(A\) parallel to the initial line intersects \(C _ { 1 }\) again at the point \(B\).
- Find the polar coordinates of \(A\).
- Show that the length of \(O B\) is \(\frac { 1 } { 4 } ( \sqrt { 13 } + 1 )\).
- Find the length of \(A B\), giving your answer to three significant figures.
\includegraphics[max width=\textwidth, alt={}, center]{7b4a1237-bb28-4cba-84b1-35fa91d87408-22_2486_1728_221_141}
\includegraphics[max width=\textwidth, alt={}, center]{7b4a1237-bb28-4cba-84b1-35fa91d87408-23_2486_1728_221_141}
\includegraphics[max width=\textwidth, alt={}, center]{7b4a1237-bb28-4cba-84b1-35fa91d87408-24_2488_1728_219_141}