AQA FP3 (Further Pure Mathematics 3) 2010 January

Question 1
View details
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x \ln ( 2 x + y )$$ and $$y ( 3 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
Question 2
View details
2
  1. Given that \(y = \ln ( 4 + 3 x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Hence, by using Maclaurin's theorem, find the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 + 3 x )\).
  3. Write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 - 3 x )\).
  4. Show that, for small values of \(x\), $$\ln \left( \frac { 4 + 3 x } { 4 - 3 x } \right) \approx \frac { 3 } { 2 } x$$
Question 3
View details
3
  1. A differential equation is given by $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x }$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
Question 4
View details
4
  1. Write down the expansion of \(\sin 3 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { 3 x \cos 2 x - \sin 3 x } { 5 x ^ { 3 } } \right]$$
Question 5
View details
5 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \mathrm { e } ^ { - 2 x }$$
  1. Find the value of the constant \(p\) for which \(y = p x \mathrm { e } ^ { - 2 x }\) is a particular integral of the given differential equation.
  2. Solve the differential equation, expressing \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
Question 6
View details
6
  1. Explain why \(\int _ { 1 } ^ { \infty } \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\) is an improper integral.
    1. Show that the substitution \(y = \frac { 1 } { x }\) transforms \(\int \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\) into \(\int 2 y \ln y \mathrm {~d} y\).
    2. Evaluate \(\int _ { 0 } ^ { 1 } 2 y \ln y \mathrm {~d} y\), showing the limiting process used.
    3. Hence write down the value of \(\int _ { 1 } ^ { \infty } \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\).
Question 7
View details
7 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = 8 x ^ { 2 } + 9 \sin x$$ (8 marks)
Question 8
View details
8 The diagram shows a sketch of a curve \(C\) and a line \(L\), which is parallel to the initial line and touches the curve at the points \(P\) and \(Q\).
\includegraphics[max width=\textwidth, alt={}, center]{32de7ef6-b7aa-4bfd-a73a-e12bfc0147e2-5_506_762_447_639} The polar equation of the curve \(C\) is $$r = 4 ( 1 - \sin \theta ) , \quad 0 \leqslant \theta < 2 \pi$$ and the polar equation of the line \(L\) is $$r \sin \theta = 1$$
  1. Show that the polar coordinates of \(P\) are \(\left( 2 , \frac { \pi } { 6 } \right)\) and find the polar coordinates of \(Q\).
  2. Find the area of the shaded region \(R\) bounded by the line \(L\) and the curve \(C\). Give your answer in the form \(m \sqrt { 3 } + n \pi\), where \(m\) and \(n\) are integers.