AQA FP3 (Further Pure Mathematics 3) 2008 January

Question 1
View details
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x ^ { 2 } - y ^ { 2 }$$ and $$y ( 2 ) = 1$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 2.1 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 2.2 )\).
Question 2
View details
2 The diagram shows a sketch of part of the curve \(C\) whose polar equation is \(r = 1 + \tan \theta\). The point \(O\) is the pole.
\includegraphics[max width=\textwidth, alt={}, center]{0c177d90-02ae-4e91-bc9d-d0c7051799b8-3_561_629_406_772} The points \(P\) and \(Q\) on the curve are given by \(\theta = 0\) and \(\theta = \frac { \pi } { 3 }\) respectively.
  1. Show that the area of the region bounded by the curve \(C\) and the lines \(O P\) and \(O Q\) is $$\frac { 1 } { 2 } \sqrt { 3 } + \ln 2$$ (6 marks)
  2. Hence find the area of the shaded region bounded by the line \(P Q\) and the arc \(P Q\) of \(C\).
Question 3
View details
3
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5$$
  2. Hence express \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
Question 4
View details
4
  1. Explain why \(\int _ { 1 } ^ { \infty } x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\) is an improper integral.
  2. Find \(\int x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\).
  3. Hence evaluate \(\int _ { 1 } ^ { \infty } x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\), showing the limiting process used.
Question 5
View details
5 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 4 x } { x ^ { 2 } + 1 } y = x$$ given that \(y = 1\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
Question 6
View details
6 A curve \(C\) has polar equation $$r ^ { 2 } \sin 2 \theta = 8$$
  1. Find the cartesian equation of \(C\) in the form \(y = \mathrm { f } ( x )\).
  2. Sketch the curve \(C\).
  3. The line with polar equation \(r = 2 \sec \theta\) intersects \(C\) at the point \(A\). Find the polar coordinates of \(A\).
Question 7
View details
7
    1. Write down the expansion of \(\ln ( 1 + 2 x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
    2. State the range of values of \(x\) for which this expansion is valid.
    1. Given that \(y = \ln \cos x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
    2. Find the value of \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) when \(x = 0\).
    3. Hence, by using Maclaurin's theorem, show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \cos x\) are $$- \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 12 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln ( 1 + 2 x ) } { x ^ { 2 } - \ln \cos x } \right]$$
Question 8
View details
8
  1. Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that:
    1. \(x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }\);
    2. \(\quad x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t }\).
  2. Hence find the general solution of the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = 0$$