OCR M2 2010 January — Question 7

Exam BoardOCR
ModuleM2 (Mechanics 2)
Year2010
SessionJanuary
TopicCircular Motion 1

7 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8e1225a2-cb98-4b71-a4af-0150f093f852-4_444_771_258_687} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} A particle \(P\) of mass 0.2 kg is moving on the smooth inner surface of a fixed hollow hemisphere which has centre \(O\) and radius \(5 \mathrm {~m} . P\) moves with constant angular speed \(\omega\) in a horizontal circle at a vertical distance of 3 m below the level of \(O\) (see Fig.1).
  1. Calculate the magnitude of the force exerted by the hemisphere on \(P\).
  2. Calculate \(\omega\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8e1225a2-cb98-4b71-a4af-0150f093f852-4_592_773_1231_687} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} A light inextensible string is now attached to \(P\). The string passes through a small smooth hole at the lowest point of the hemisphere and a particle of mass 0.1 kg hangs in equilibrium at the end of the string. \(P\) moves in the same horizontal circle as before (see Fig. 2).
  3. Calculate the new angular speed of \(P\).