6
\includegraphics[max width=\textwidth, alt={}, center]{8e1225a2-cb98-4b71-a4af-0150f093f852-3_698_1047_1297_550}
A particle \(P\) is projected with speed \(V _ { 1 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation \(\theta _ { 1 }\) from a point \(O\) on horizontal ground. When \(P\) is vertically above a point \(A\) on the ground its height is 250 m and its velocity components are \(40 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) horizontally and \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) vertically upwards (see diagram).
- Show that \(V _ { 1 } = 86.0\) and \(\theta _ { 1 } = 62.3 ^ { \circ }\), correct to 3 significant figures.
At the instant when \(P\) is vertically above \(A\), a second particle \(Q\) is projected from \(O\) with speed \(V _ { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of elevation \(\theta _ { 2 } . P\) and \(Q\) hit the ground at the same time and at the same place.
- Calculate the total time of flight of \(P\) and the total time of flight of \(Q\).
- Calculate the range of the particles and hence calculate \(V _ { 2 }\) and \(\theta _ { 2 }\).