7 In a chemical process, the mass \(M\) grams of a chemical at time \(t\) minutes is modelled by the differential equation
$$\frac { \mathrm { d } M } { \mathrm {~d} t } = \frac { M } { t \left( 1 + t ^ { 2 } \right) }$$
- Find \(\int \frac { t } { 1 + t ^ { 2 } } \mathrm {~d} t\).
- Find constants \(A , B\) and \(C\) such that
$$\frac { 1 } { t \left( 1 + t ^ { 2 } \right) } = \frac { A } { t } + \frac { B t + C } { 1 + t ^ { 2 } } .$$
- Use integration, together with your results in parts (i) and (ii), to show that
$$M = \frac { K t } { \sqrt { 1 + t ^ { 2 } } } ,$$
where \(K\) is a constant.
- When \(t = 1 , M = 25\). Calculate \(K\).
What is the mass of the chemical in the long term?