OCR MEI C4 (Core Mathematics 4) 2005 June

Question 2
View details
2 Find the first 4 terms in the binomial expansion of \(\sqrt { 4 + 2 x }\). State the range of values of \(x\) for which the expansion is valid.
Question 3
View details
3 Solve the equation $$\sec ^ { 2 } \theta = 4 , \quad 0 \leqslant \theta \leqslant \pi ,$$ giving your answers in terms of \(\pi\).
Question 4
View details
4 Fig. 4 shows a sketch of the region enclosed by the curve \(\sqrt { 1 + \mathrm { e } ^ { - 2 x } }\), the \(x\)-axis, the \(y\)-axis and the line \(x = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a1123f8-53cd-4b24-bec6-8c3bccc22653-3_517_755_1576_649} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Give your answer in an exact form.
Question 5
View details
5 Solve the equation \(2 \cos 2 x = 1 + \cos x\), for \(0 ^ { \circ } \leqslant x < 360 ^ { \circ }\).
Question 6
View details
6 A curve has cartesian equation \(y ^ { 2 } - x ^ { 2 } = 4\).
  1. Verify that $$x = t - \frac { 1 } { t } , \quad y = t + \frac { 1 } { t } ,$$ are parametric equations of the curve.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( t - 1 ) ( t + 1 ) } { t ^ { 2 } + 1 }\). Hence find the coordinates of the stationary points of the curve. Section B (36 marks)
Question 7
View details
7 In a chemical process, the mass \(M\) grams of a chemical at time \(t\) minutes is modelled by the differential equation $$\frac { \mathrm { d } M } { \mathrm {~d} t } = \frac { M } { t \left( 1 + t ^ { 2 } \right) }$$
  1. Find \(\int \frac { t } { 1 + t ^ { 2 } } \mathrm {~d} t\).
  2. Find constants \(A , B\) and \(C\) such that $$\frac { 1 } { t \left( 1 + t ^ { 2 } \right) } = \frac { A } { t } + \frac { B t + C } { 1 + t ^ { 2 } } .$$
  3. Use integration, together with your results in parts (i) and (ii), to show that $$M = \frac { K t } { \sqrt { 1 + t ^ { 2 } } } ,$$ where \(K\) is a constant.
  4. When \(t = 1 , M = 25\). Calculate \(K\). What is the mass of the chemical in the long term?