OCR MEI FP3 2011 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2011
SessionJune
TopicGroups

4
  1. Show that the set \(G = \{ 1,3,4,5,9 \}\), under the binary operation of multiplication modulo 11 , is a group. You may assume associativity.
  2. Explain why any two groups of order 5 must be isomorphic to each other. The set \(H = \left\{ 1 , \mathrm { e } ^ { \frac { 2 } { 5 } \pi \mathrm { j } } , \mathrm { e } ^ { \frac { 4 } { 5 } \pi \mathrm { j } } , \mathrm { e } ^ { \frac { 6 } { 5 } \pi \mathrm { j } } , \mathrm { e } ^ { \frac { 8 } { 5 } \pi \mathrm { j } } \right\}\) is a group under the binary operation of multiplication of complex numbers.
  3. Specify an isomorphism between the groups \(G\) and \(H\). The set \(K\) consists of the 25 ordered pairs \(( x , y )\), where \(x\) and \(y\) are elements of \(G\). The set \(K\) is a group under the binary operation defined by $$\left( x _ { 1 } , y _ { 1 } \right) \left( x _ { 2 } , y _ { 2 } \right) = \left( x _ { 1 } x _ { 2 } , y _ { 1 } y _ { 2 } \right)$$ where the multiplications are carried out modulo 11 ; for example, \(( 3,5 ) ( 4,4 ) = ( 1,9 )\).
  4. Write down the identity element of \(K\), and find the inverse of the element \(( 9,3 )\).
  5. Explain why \(( x , y ) ^ { 5 } = ( 1,1 )\) for every element \(( x , y )\) in \(K\).
  6. Deduce that all the elements of \(K\), except for one, have order 5. State which is the exceptional element.
  7. A subgroup of \(K\) has order 5 and contains the element (9, 3). List the elements of this subgroup.
  8. Determine how many subgroups of \(K\) there are with order 5 .