2 A surface \(S\) has equation \(z = 8 y ^ { 3 } - 6 x ^ { 2 } y - 15 x ^ { 2 } + 36 x\).
- Sketch the section of \(S\) given by \(y = - 3\), and sketch the section of \(S\) given by \(x = - 6\). Your sketches should include the coordinates of any stationary points but need not include the coordinates of the points where the sections cross the axes.
- From your sketches in part (i), deduce that \(( - 6 , - 3 , - 324 )\) is a stationary point on \(S\), and state the nature of this stationary point.
- Find \(\frac { \partial z } { \partial x }\) and \(\frac { \partial z } { \partial y }\), and hence find the coordinates of the other three stationary points on \(S\).
- Show that there are exactly two values of \(k\) for which the plane with equation
$$120 x - z = k$$
is a tangent plane to \(S\), and find these values of \(k\).