10 The plane \(p\) has equation \(2 x - 3 y + 6 z = 16\). The plane \(q\) is parallel to \(p\) and contains the point with position vector \(\mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k }\).
- Find the equation of \(q\), giving your answer in the form \(a x + b y + c z = d\).
- Calculate the perpendicular distance between \(p\) and \(q\).
- The line \(l\) is parallel to the plane \(p\) and also parallel to the plane with equation \(x - 2 y + 2 z = 5\). Given that \(l\) passes through the origin, find a vector equation for \(l\).