A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Integration by Substitution
Q6
CAIE P3 2009 November — Question 6
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2009
Session
November
Topic
Integration by Substitution
6
Use the substitution \(x = 2 \tan \theta\) to show that $$\int _ { 0 } ^ { 2 } \frac { 8 } { \left( 4 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { 2 } \theta \mathrm {~d} \theta$$
Hence find the exact value of $$\int _ { 0 } ^ { 2 } \frac { 8 } { \left( 4 + x ^ { 2 } \right) ^ { 2 } } \mathrm {~d} x$$
This paper
(10 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10