4 A particle \(P\) of mass \(m\) is attached to one end of a light inextensible string of length \(a\). The other end of the string is attached to a fixed point \(O\) and \(P\) is held with the string taut and horizontal. The particle \(P\) is projected vertically downwards with speed \(\sqrt { } ( 2 a g )\) so that it begins to move along a circular path. The string becomes slack when \(O P\) makes an angle \(\theta\) with the upward vertical through \(O\).
- Show that \(\cos \theta = \frac { 2 } { 3 }\).
- Find the greatest height, above the horizontal through \(O\), reached by \(P\) in its subsequent motion.
\includegraphics[max width=\textwidth, alt={}, center]{4240c99e-10ba-443e-8021-1872e6e64ccf-10_1051_744_258_696}
A thin uniform \(\operatorname { rod } A B\) has mass \(\lambda M\) and length \(2 a\). The end \(A\) of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre \(O\), mass \(3 M\) and radius \(a\). The end \(B\) of the rod is rigidly attached to the surface of a uniform solid sphere with centre \(C\), mass \(5 M\) and radius \(a\). The rod lies along the line joining the centres of the spheres, so that \(C B A O\) is a straight line. The horizontal axis \(L\) is perpendicular to the rod and passes through the point of the rod that is a distance \(\frac { 1 } { 2 } a\) from \(B\) (see diagram). The object consisting of the rod and the two spheres can rotate freely about \(L\).