CAIE FP2 2019 November — Question 1 5 marks

Exam BoardCAIE
ModuleFP2 (Further Pure Mathematics 2)
Year2019
SessionNovember
Marks5
TopicMoments

1 A particle \(P\) is moving in a circle of radius 2 m . At time \(t\) seconds, its velocity is \(( t - 1 ) ^ { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At a particular time \(T\) seconds, where \(T > 0\), the magnitude of the radial component of the acceleration of \(P\) is \(8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the magnitude of the transverse component of the acceleration of \(P\) at this instant.
[0pt] [5]
\includegraphics[max width=\textwidth, alt={}, center]{4240c99e-10ba-443e-8021-1872e6e64ccf-04_591_805_262_671} A uniform square lamina \(A B C D\) of side \(4 a\) and weight \(W\) rests in a vertical plane with the edge \(A B\) inclined at an angle \(\theta\) to the horizontal, where \(\tan \theta = \frac { 1 } { 3 }\). The vertex \(B\) is in contact with a rough horizontal surface for which the coefficient of friction is \(\mu\). The lamina is supported by a smooth peg at the point \(E\) on \(A B\), where \(B E = 3 a\) (see diagram).
  1. Find expressions in terms of \(W\) for the normal reaction forces at \(E\) and \(B\).
  2. Given that the lamina is about to slip, find the value of \(\mu\).
This paper (2 questions)
View full paper