| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2013 |
| Session | June |
| Topic | Moments |
1
\includegraphics[max width=\textwidth, alt={}, center]{a473cbb8-877f-48df-8751-c76d96396734-2_684_714_246_717}
A uniform \(\operatorname { rod } A B\), of mass \(m\) and length \(4 a\), rests with the end \(A\) on rough horizontal ground. The point \(C\) on \(A B\) is such that \(A C = 3 a\). A light inextensible string has one end attached to the point \(P\) which is at a distance \(5 a\) vertically above \(A\), and the other end attached to \(C\). The rod and the string are in the same vertical plane and the system is in equilibrium with angle \(A C P\) equal to \(90 ^ { \circ }\) (see diagram). The coefficient of friction between the rod and the ground is \(\mu\). Show that the least possible value of \(\mu\) is \(\frac { 24 } { 43 }\).