| Exam Board | CAIE |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2011 |
| Session | June |
| Topic | Simple Harmonic Motion |
One end of a light elastic string is attached to a fixed point \(O\). A particle of mass \(m\) is attached to the other end of the string and hangs freely under gravity. In the equilibrium position, the extension of the string is \(d\). Show that the period of small vertical oscillations about the equilibrium position is \(2 \pi \sqrt { } \left( \frac { d } { g } \right)\).
The particle is now pulled down and released from rest at a distance \(2 d\) below the equilibrium position. Given that the particle does not reach \(O\) in the subsequent motion, show that the time taken until the particle first comes to instantaneous rest is \(\left( \sqrt { } 3 + \frac { 2 } { 3 } \pi \right) \sqrt { } \left( \frac { d } { g } \right)\).